Безопасность жизнедеятельности Шпаргалка. Часть 4

    31. Гигиенические нормы содержания химических веществ в атмосфере

    В связи с тем, что требование полного отсутствия промышленных ядов в зоне дыхания работающих зачастую невыполнимо, большое значение имеет гигиеническая регламентация содержания вредных веществ в воздухе рабочей зоны, которая проводится в три этапа:

    1) обоснование ориентировочного безопасного уровня воздействия;

    2) обоснование предельно допустимой концентрации (ПДК);

    3) корректирование этой концентрации с учетом условий труда работающих и состояния их здоровья. Установлению ПДК может предшествовать обоснование ориентировочного безопасного уровня воздействия вредных веществ в воздухе рабочей зоны, атмосфере населенных мест, в воде и почве.

    Ориентировочный безопасный уровень воздействия устанавливают временно на период, предшествующий проектированию производства. Он определяется путем расчета по физико-химическим свойствам или путем интерполяции и экстраполяций в гомологических рядах соединений или по показателям острой токсичности, причем должен пересматриваться через два года после их утверждения.

    ПДК вредных веществ в воздухе рабочей зоны – концентрации, которые при ежедневной работе в продолжение 8 ч или при другой деятельности, но не превышающей 41 ч в неделю, в течение стажа рабочего не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего или последующего поколений. Содержание вредных веществ в воздухе рабочей зоны не должно превышать показателей, установленных гигиеническими нормативами (ГН), утвержденных Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека.

    ПДК вредных веществ в воздухе населенных мест – максимальные концентрации, отнесенные к определенному периоду осреднения и не оказывающие при регламентированной вероятности их появления ни прямого, ни косвенного вредного воздействия на организм человека, включая отдаленные последствия для настоящего и последующих поколений, не снижающие работоспособности человека и не ухудшающие его самочувствия.

    Максимальная концентрация ПДК – наиболее высокая из числа 30-минутных концентраций, зарегистрированных в данной точке за определенный период наблюдения, в основу которого положен принцип превращения рефлекторных реакций у человека.

    Средняя концентрация ПДК – средняя из числа концентраций, выявленных в течение суток или отбираемая непрерывно в течение 24 ч. В основу ее определения положен принцип предотвращения резорбтивного (общетоксического) действия на организм.

    32. Гигиенические нормы содержания химических веществ в воде

    Гигиенические нормы содержания химических веществ в воде рек, озер, водохранилищ проводят в соответствии с «Санитарными правилами и нормами охраны поверхностных вод от загрязнений» двух категорий:

    1) водоемы хозяйственно-питьевого и культурно-бытового назначения;

    2) водоемы рыбохозяйственного назначения. Санитарные правила устанавливают нормируемые значения для таких физических и химических параметров состояния воды, как: содержание плавающих примесей и взвешенных веществ, запах, привкус, окраска и температура воды, значение кислотности, состав и концентрации минеральных примесей и растворенного в воде кислорода, биологическая потребность воды в кислороде, состав воды и предельно допустимая концентрация (ПДК) ядовитых и вредных веществ и болезнетворных бактерий в воде.

    Лимитирующий показатель вредности для водоемов хозяйственно-питьевого и культурно-бытового назначения используют трех видов: санитарно-токсикологический, общесанитарный и органолептический. Для водоемов рыбохозяйственного назначения наряду с вышеуказанными видами используют еще два вида лимитирующих показателей воды (ЛПК): токсикологический и рыбохозяйственный. Санитарное состояние водоема отвечает требованиям норм при выполнении следующего условия: отношение суммарной концентрации вещества ЛПК в расчетном створе водоема к ПДК вещества (ПДКВ) должно быть меньше или равно 1.

    Так, в водоемах хозяйственно-питьевого и культурно-бытового назначения ПДКВ, например, бензола по санитарно-токсикологическим нормам должно содержаться не более 0,5 мг/л, а фенола (по органо-лептическим показателям) не более 0,001 мг/л. Бензина и керосина по этим же показателям должно содержаться не более 0,1 мг/л, меди по общесанитарным показателям не более 1,0 мг/л. В водоемах, относящихся ко второй категории (рыбохозяйственного назначения), токсикологический ЛПКВ бензола должен составлять 0,5 мг/л; рыбохозяйственный ЛПКВ фенола – 0,001 мг/л, бензина и керосина не более 0,1 мг/л. Токсикологический ЛПКВ содержания меди должен составлять не более 0,01 мг/л.

    Гигиенические нормы содержания химических веществ в воде рек, озер, водохранилищ регламентируются Федеральным законом от 30 марта 1999 г «О санитарно-эпидемиологическом благополучии населения», Положением о государственном санитарно-эпидемиологическом нормированиии (постановление Правительства РФ от 24 июля 2000 г.) и соответствующими гигиеническими нормативами (ГН).

    33. Гигиенические нормы содержания химических веществ в почве

    Основные положения теории и практики гигиенического нормирования содержания вредных веществ в почве определяются тем, что не всякое поступление экзогенных химических веществ в почву следует рассматривать как опасное для здоровья человека и окружающей среды. Безопасность поступления химических веществ в почву определяется недопустимостью превышения адаптационной возможности самых чувствительных групп населения или порога самоочищающей способности почвы. Установление норматива основывается на данных, полученных в экстремальных почвенно-климатических условиях (максимальная миграция вещества в контактирующие с почвой среды) с учетом влияния на процессы самоочищения и микробиоценозы.

    Гигиенические нормативы устанавливаются с учетом лимитирующего показателя вредности: общесанитарного (ОС), миграционного водного (МВ), воздушного (МА), органолептического, фитоаккумуляци-онного (ТВ) (переход и накопление в растениях) и санитарно-токсикологического. Если учитывать чрезвычайную вариабельность климатических и ландшафтных условий формирования почв, то экспериментально обоснованную ПДК можно рассматривать как эталонную величину отсчета, используемую для оценки опасности загрязнения почвы в конкретных почвенно-климатических условиях.

    ПДК экзогенного химического вещества в почве – его максимальное количество (в мг/кг пахотного слоя абсолютно сухой почвы), установленное в экстремальных почвенно-климатических условиях,

    которое гарантирует отсутствие отрицательного прямого или опосредованного через контактирующие с почвой среды воздействия на здоровье человека, его потомство и санитарные условия жизни населения.

    По своей величине ПДК почвы значительно отличается от принятых допустимых концентраций для воды и воздуха, так как поступление вредных веществ в организм человека непосредственно из почвы происходит в исключительных случаях и в незначительных количествах (через контактирующие с почвой среды, которыми являются воздух, вода и растения).

    Для оценки содержания вредных веществ в почве проводят отбор проб на участке площадью 25 м2в 3–5 точках по диагонали с глубины 0,25 м, а при выяснении влияния загрязнения на грунтовые воды – с глубины 0,75-2 м в количестве 0,2–1 кг. В случае применения новых химических соединений, для которых отсутствуют ПДКП, рассчитываются временные допустимые концентрации: ВДКП = 1,23 + 0,48 ПДКПР(для продуктов питания, мг/кг).

    34. Гигиенические нормы содержания химических веществ в продуктах питания

    В России содержание химических веществ в продуктах питания превышает гигиенические нормативы в разные годы в 1–3% исследованных образцов. Нитраты, являясь естественным составным компонентом растений, присутствуют в количествах, превышающих максимальные допустимые уровни, в 2 % проб. Наиболее часто химические показатели в недопустимых концентрациях обнаруживаются в птице и птицеводческой продукции, в зерне, детском питании, меде и продуктах пчеловодства.

    Пестициды. В основном присутствие пестицидов в продуктах питания можно оценить как незначительное, так как пробы с превышением нормативного уровня составляют только 0,4 %. Из продуктов питания наиболее загрязнены пестицидами мясо и мясопродукты (1,42 % проб), молоко и молочные продукты, мед и продукция пчеловодства (0,62 %).

    Количество проб продуктов питания, содержащих пестициды, составляет более 6 %, что свидетельствует о достаточно широкой их распространенности в продуктах питания. Наиболее часто в продуктах питания обнаруживаются карбофос (3,2 %), децис (1,5 %), актелик (3,7 %), хлорэтанол (2,8 %), бензофосфат (1,2 %), амбуш (1,3 %), цимбуш (3,7 %), диазинон (1,3 %), байлетон (1,4 %), сумицидин (3,0 %), дилор (2,0 %), рамрод (2,4 %), семерон (4,8 %), фен-медифам (1,8 %), поликарбоцин (2,4 %), омайт (2,8 %), цинеб (4,4 %), пропазин (7,9 %), ТИЛТ (1,2 %).

    Микотоксины. Высокое содержание микотоксинов чаще всего выявлялось в дикорастущих пищевых продуктах (0,35 %), однако в абсолютных цифрах приоритет остается за хлебобулочными и мучными изделиями – 20 % нестандартных проб.

    Нитрозамины традиционно наиболее часто обнаруживались в мясопродуктах.

    Тяжелые металлы в повышенных концентрациях наиболее часто обнаруживаются в дикорастущих растениях, птицепродуктах и жировых растительных продуктах, ртуть – в рыбе (0,21 %), свинец – в детском питании (0,62 %), кадмий – в дикорастущих пищевых продуктах (1,36 %).

    35. Отдаленные последствия вредных, травмирующих и поражающих факторов

    Вредные, травмирующие и поражающие факторы не действуют избирательно, они негативно воздействуют на все составляющие систем «человек – техносфера» и «техносфера – природная среда» одновременно, если они оказываются в зоне влияния опасностей. Кроме того, рост антропогенного негативного влияния на среду обитания не всегда ограничивается нарастанием только опасностей прямого действия. При определенных условиях возможно появление отдаленных последствий негативных воздействий, которые способны возникать на региональном и глобальном уровнях, оказывать негативное влияние на регионы биосферы и значительные группы людей. К таким последствиям относятся процессы образования кислотных дождей, смога, «парниковый эффект», разрушение озонового слоя Земли, накопление токсичных и канцерогенных веществ в организмах животных и рыб, в пищевых продуктах и т. д.

    Несмотря на то, что травмоопасные воздействия влияют кратковременно и спонтанно, а также в ограниченном пространстве, возникают при авариях и катастрофах, при взрывах и внезапных разрушениях зданий и сооружений, они имеют отдаленные последствия, характеризующиеся длительными или периодическими негативными влияниями на человека и природную среду, элементы техносферы. При этом пространственные зоны вредных воздействий изменяются в широких пределах от рабочих и бытовых зон до размеров всего земного пространства. К ним относятся воздействия выбросов парниковых и озоно-разрушающих газов, поступление радиоактивных веществ в атмосферу и т. п.

    Воздействие травмоопасных факторов приводит к травмам или гибели людей, сопровождается очаговыми разрушениями природной среды и техносферы, также для них характерны значительные материальные потери. Длительное воздействие травмоопасных факторов оказывает негативное влияние на состояние здоровья людей, приводит к профессиональным заболеваниям.

    Воздействуя на природную среду, вредные факторы приводят к деградации представителей флоры и фауны, изменяют состав компонентов биосферы. При высоких концентрациях вредных веществ или при высоких потоках энергии вредные факторы по характеру своего воздействия могут приближаться к травмоопасным воздействиям. Например, высокие концентрации токсичных веществ в воздухе, воде или пище могут вызывать отравления.

    Таким образом, техногенные опасности ухудшают здоровье людей, приводят к травмам, материальным потерям и к деградации природной среды.

    36. Нормы радиационной безопасности

    Организм человека постоянно подвергается воздействию космических лучей и природных радиоактивных элементов, присутствующих в воздухе, почве, в тканях самого организма. Уровни природного излучения от всех источников в среднем соответствуют 100 мбэр в год, но в отдельных районах – до 1000 мбэр в год. Для лиц, работающих в сфере действия ионизирующего излучения, установлены значения предельно допустимой дозы на все тело, которая при длительном воздействии не вызывает у человека нарушения общего состояния, а также функций кроветворения и воспроизводства.

    Для ионизирующего излучения установлена предельно допустимая доза (ПДД) 5 бэр в год. Международная комиссия по радиационной защите рекомендовала в качестве ПДД разового аварийного облучения 25 бэр и профессионального хронического облучения – до 5 бэр в год и установила в 10 раз меньшую дозу для ограниченных групп населения. Для оценки отдаленных последствий действия излучения в потомстве учитывают возможность увеличения частоты мутаций. Доза излучения, вероятнее всего удваивающая частоту самопроизвольных мутации, не превышает 100 бэр на поколение. Генетически значимые дозы для населения находятся в пределах 7-55 мбэр/год. При общем внешнем облучении человека дозой в 150–400 бэр развивается лучевая болезнь легкой и средней степени тяжести; при дозе 400–600 бэр – тяжелая лучевая болезнь; облучение в дозе свыше 600 бэр является абсолютно смертельным, если не используются меры профилактики и терапии.

    При облучении дозами 100-1000 бэр в основе поражения лежит костномозговой механизм развития лучевой болезни. При общем или локальном облучении живота в дозах 1000–5000 бэр – кишечный механизм развития лучевой болезни с превалированием токсемии.

    При остром облучении в дозах более 5000 бэр развивается молниеносная форма лучевой болезни. Возможна смерть «под лучом» при облучении в дозах более 20 000 бэр. При попадании в организм радионуклидов происходит инкорпорирование радиоактивных веществ. Опасность инкорпорации определяется особенностями метаболизма, удельной активностью, путями поступления радионуклидов в организм. Наиболее опасны радионуклиды, имеющие большой период полураспада, плохо выводящиеся из организма, радионуклиды с равномерным распределением в организме, например тритий и полоний-210.

    Мероприятия по ограничению облучения населения регламентируются Нормами радиационной безопасности НРБ-99.

    37. Демографическая проблема и окружающая среда

    В современных условиях развития общества на первое место выдвигаются не количественные показатели потребления экономических благ на душу населения, а качественные, и среди них важнейшее значение имеет показатель экологического благополучия общества. Среда обитания человека представляет собой сложное переплетение взаимодействующих естественных и антропогенных факторов. В этих условиях необходим единый интегральный критерий качества среды с точки зрения ее пригодности для обитания человека.

    Здоровье человека (индивида) – процесс сохранения его психофизиологических функций, оптимальной работоспособности и социальной активности при максимальной продолжительности жизни. Здоровье (полное душевное и физическое благополучие) популяции – процесс сохранения и развития биологической и психосоциальной жизнедеятельности населения, проживающего на определенной территории в ряду поколений.

    По различным данным более половины людей в урбанизированных районах находятся в состоянии предболезни, которое имеет ряд существенных отличий как от здоровья, так и от болезни. Главными факторами в этом случае являются антропологическое напряжение и утомление, связанные с проблемой больших городов – стрессами. Ежегодно тысячи смертей в городах всего мира связаны с неблагоприятной экологической ситуацией. Всякое воздействие вызывает у природы защитную реакцию, направленную на его нейтрализацию. Эта способность природы долгое время эксплуатировалась человеком бездумно и хищнически. Но процесс загрязнения резко прогрессирует, и становится очевидным, что природные системы самоочищения рано или поздно не смогут выдержать такой натиск, так как способность атмосферы к самоочищению имеет определенные границы. Запуск ракет, испытания ядерного оружия, ежегодное уничтожение природного озонатора – миллионов гектаров леса, массовое применение фреонов в технике и быту приводят к разрушению озонового слоя.

    Решение задач по устранению указанных проблем – один из важнейших вопросов сохранения здоровья людей в этих системах, так как сложная экологическая ситуация является одной из причин ухудшения состояния здоровья населения, с которым напрямую связаны показатели рождаемости и смертности. Наивысшие показатели заболеваемости и смертности фиксируются в наиболее неблагополучных с экологической точки зрения регионах.

    38. Защита от токсичных выбросов

    Токсичные выбросы из окружающей среды проникают в организм через дыхательные пути, через поврежденную и неповрежденную кожу, через желудочно-кишечный тракт. Токсическое действие некоторых веществ может проявляться в виде вторичных поражений (например, колита при мышьяковых и ртутных отравлениях и т. п.). Токсические выбросы, попадая в воздух, медленно оседают на легких людей, затрудняя дыхание; на коже, закупоривая потовые железы, затрудняя потоотделение и испарение, что мешает нормальному терморегуляционному процессу, снижает сопротивляемость кожи и повышает проникновение микробов, а также вызывает аллергические реакции.

    Общетоксическое действие на организм человека оказывает пыль свинца, марганца, сурьмы, не только вызывая отравления, но и оказывая аллергенное воздействие. При этом снижается фильтрующая способность носовой полости, на других участках дыхательных путей развиваются хронические воспалительные процессы (силикоз легких, туберкулез), может развиться бронхиальная астма. Фиброгенное действие пыли (разрастание соединительной ткани в органах) зависит от содержания свободной двуокиси кремния.

    Кроме концентраций пыли, опасных для здоровья человека, существуют взрывоопасные концентрации органической пыли: табачной, мучной, сахарной, каменноугольной, кожевенной и др.

    Основой проведения мероприятий по борьбе с токсичными выбросами являются: Федеральные законы «Об охране окружающей среды» 2002 г., «Об охране атмосферного воздуха» 1999 г., «О санитарно-эпидемиологическом благополучии населения» 1999 г., Положение о нормативах выбросов вредных (загрязняющих) веществ в атмосферный воздух и вредных физических воздействий на него (постановление Правительства РФ 2000 г.), постановление Правительства РФ «Об утверждении Положения о государственном контроле за охраной атмосферного воздуха» 2001 г. и др.

    Рекомендуются следующие мероприятия по уменьшению запыленности токсическими выбросами воздушной среды:

    1) изоляция источников пылеобразования (герметизация оборудования);

    2) увлажнение воздуха и пылеобразующих веществ;

    3) гидро– и пневмотранспортировка веществ;

    4) устройство пыле– и газоотсасывающих устройств;

    5) осаждение пыли (аэрозолей) в акустическом, электрическом полях, что не только снижает запыленность воздуха, но и помогает улавливать ценные продукты производства;

    6) применение наиболее рациональных средств и способов уборки помещений (пылесосов, уборочных машин), осаждение пыли распылением воды;

    7) применение общей и местной вытяжной вентиляции;

    8) применение индивидуальных средств защиты (противогазов, респираторов, спецодежды, очков и т. п.).

    39. Защита от энергетических воздействий

    При решении задач защиты от энергетических воздействий выделяют источник, приемник энергии и защитное устройство, которое уменьшает до допустимых уровней поток энергии к приемнику.

    Защитное устройство обладает способностями отражать, поглощать, быть прозрачным по отношению к потоку энергии и характеризуется энергетически коэффициентами поглощения, отражения, коэффициентом передачи. Поэтому можно выделить следующие принципы защиты:

    1) защита осуществляется за счет отражательной способности защитных устройств;

    2) защита осуществляется за счет поглощательной способности защитного устройства;

    3) защита осуществляется с учетом свойств прозрачности защитных устройств.

    На практике принципы обычно комбинируют, получая различные методы защиты (в частности, изоляцией и поглощением).

    Методы изоляции используют тогда, когда источник и приемник энергии, являющийся одновременно объектом защиты, располагаются с разных сторон от защитного устройства. В основе этих методов лежит уменьшение прозрачности среды между источником и приемником. При этом можно выделить два основных метода изоляции: уменьшение прозрачности среды достигается за счет поглощения энергии или за счет высокой отражательной способности защитного устройства.

    В основе методов поглощения лежит принцип увеличения потока энергии, прошедшего в защитное устройство. Есть два вида поглощения энергии защитным устройством: поглощение энергии самим защитным устройством за счет ее отбора от источника в той или иной форме, в том числе в виде необратимых потерь и поглощение энергии в связи с большой прозрачностью защитного устройства.

    Например, при воздействии такого фактора опасности как вибрация, в вибросистеме действуют силы инерции, трения, упругости и вынуждающие. Для защиты от вибрации используют метод виброизоляции, когда между источником вибрации и ее приемником, являющимся одновременно объектом защиты, устанавливают виброизолятор с малым коэффициентом передачи.

    Защита от вибрации методами поглощения осуществляется в виде динамического гашения и вибропоглощения. В первом случае виброэнергия поглощается защитным устройством, отбирающим виброэнергию от источника на себя (есть инерционный динамический виброгаситель). Защитное устройство, увеличивающее рассеивание энергии в результате повышения диссипативных свойств системы, называется поглотителем вибрации. Возможно комбинирование этих двух свойств одновременно с помощью динамических виброгасителей с трением.

    40. Обеспечение безопасности технических средств и технологических процессов

    Методы обеспечения безопасности и экологичности технических систем и технологических процессов заключаются в следующем:

    1) замене вредных веществ безвредными или менее вредными;

    2) замене сухих способов переработки и транспортировки пылящих материалов мокрыми;

    3) замене и (или) усовершенствовании технологических операций, связанных с возникновением шума, вибраций, электромагнитных воздействий и других вредных факторов, процессами или операциями, при которых обеспечены отсутствие или меньшая интенсивность этих факторов;

    4) герметизации оборудования и аппаратуры;

    5) применении методов полного улавливания и очистки технологических выбросов, очистки промышленных стоков от загрязнения; внедрении тепловой изоляции нагретых поверхностей и применении средств защиты от лучистого тепла;

    6) разработке малоотходных и безотходных технологий (что позволяет осуществлять проектирование и выпуск технологического оборудования с замкнутыми циклами движения жидких и газообразных веществ).

    Все технические средства при вводе в эксплуатацию и ежегодно в период эксплуатации проверяют на соответствие предъявляемых к ним требованиям, контрольно-измерительная аппаратура ежегодно проверяется в специальных лабораториях. Техническое средство, не соответствующее данным технического паспорта и требованиям безопасности, а также не прошедшее своевременную проверку, не допускается к эксплуатации, подлежит ремонту, модернизации или замене и обязательному контролю.

    Важным средством повышения надежности и безопасности технических систем в процессе эксплуатации является функциональная диагностика. Такие системы дают возможность контролировать объект в процессе выполнения им рабочих функций и реагировать на отказ в момент его возникновения. Эти системы проектируются и изготавливаются вместе с контролируемым объектом и применяются на этапе производства, в процессе эксплуатации объекта, а также позволяют немедленно реагировать на нарушения в работе объекта, подключать резервные узлы взамен неисправных, переходить на другие режимы работы.

    Для обеспечения экологической безопасности технических систем и технологий используется экобиозащитная техника – средства защиты человека и природной среды, направленные на локализацию источников негативного воздействия, снижение уровня энергетического воздействия факторов на человека и окружающую среду.